

A CHEMOTAXONOMIC STUDY OF FLAVONOIDS IN THE LEAVES OF SIX *TRICHOSANTHES* SPECIES

MASAO YOSHIZAKI, HIROHARU FUJINO, MIHOKO MASUYAMA*, MUNEHISA ARISAWA* and NAOKATA MORITA*

Department of Herbal Garden and *Department of Medicinal Resources, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-01, Japan

(Revised received 16 February 1987)

Key Word Index—*Trichosanthes* spp.; Cucurbitaceae; leaves; flavonoids; chemotaxonomy.

Abstract—The 7-, 3'- and 4'-glucosides of luteolin, the 7-glucoside and 6,8-di-C-glucoside of apigenin were isolated from *Trichosanthes kirilowii* var. *japonica*. Kaempferol 3,7-di-rhamnoside and 3-glucoside-7-rhamnoside were identified from *T. cucumeroides*, kaempferol 3-galactoside and 3-sophoroside were also identified from *T. anguina*. Quercetin-3-rutinoside was detected from *T. multiloba* and *T. rostrata*. *T. bracteata* afforded luteolin 3'-glucoside and kaempferol 3-rutinoside, and *T. kirilowii* afforded luteolin 7-, 3'- and 4'-glucosides and apigenin 7-glucoside.

INTRODUCTION

The genus *Trichosanthes* consists of about 60 species, five of which, *T. bracteata* Voiq, *T. multiloba* Miquel, *T. kirilowii* Maxim. var. *japonica* Kitam., *T. cucumeroides* Maxim. and *T. rostrata* Kitam., are distributed in Japan. Recently, we reported the identification of three phenolic compounds, 11-methoxynoryangonin, vanillic acid and tricin, and steryl- β -D-glucopyranoside from seed of *T. uniflora* Hao [1]. Previously, Nakaoiki and Morita have reported the isolation of luteolin 7-O-glucoside (1) from *T. kirilowii* Maxim. var. *Japonica* Kitam. and kaempferol 3,7-di-O-rhamnoside (6) from *T. cucumeroides* Maxim. [2]. In this work we have studied the flavonoids of seven *Trichosanthes* species, the five above plus *T. anguina* L. and *T. kirilowii* Maxim., in order to establish a chemotaxonomic approach to the genus [3].

RESULTS AND DISCUSSION

Eleven flavonoids (1-11) were isolated and identified from the leaves of the genus *Trichosanthes*. *T. kirilowii* afforded luteolin 7-O- β -D-glucopyranoside (1), 4'-O- β -D-glucopyranoside (2) and 3'-O- β -D-glucopyranoside (4)

and apigenin 7-O- β -D-glucopyranoside (3). Its variety *japonica* Kitam. afforded 1-4 and apigenin 6,8-di-C- β -glucopyranoside (5). *T. cucumeroides* afforded two kaempferol glucosides, 3,7-di-O- α -L-rhamnopyranoside (6) and 3-O- β -D-glucopyranoside-7-O- α -L-rhamnopyranoside (7). *T. anguina* also afforded another two kaempferol glycosides, the 3-O- β -galactopyranoside (10) and 3-O- β -sophoroside (11). *T. rostrata* and *T. multiloba* afforded quercetin 3-O- β -rutinoside (8). From *T. bracteata* (4) and kaempferol 3-O- β -rutinoside (9) were isolated.

These flavonoids were identified as described in the Experimental. Although only a few species have been studied, it seems that *Trichosanthes* can be divided into four groups on the basis of their aglycones (Table 1): one with flavones alone, two with kaempferol alone, three with quercetin alone and four with flavones plus flavonols.

EXPERIMENTAL

General experimental procedures. All mps are uncorr. The 1 H- and 13 C-NMR spectra were measured at 200 MHz and 50.3 MHz, respectively, and chemical shifts are given in δ (ppm) with TMS as an int. standard.

Table 1. Flavonoids in the leaves of the *Trichosanthes*

Plants	Flavonoids				Flavones				Flavonols			
	Ap. 3	glyc. 5	Lu. 1	glyc. 2	4	6	7	Km. 9	glyc. 10	11	Qu. 8	
<i>T. kirilowii</i> Maxim. var. <i>japonica</i> Kitam.	+		+	+	+							
<i>T. cucumeroides</i> Maxim.		+	+	+	+	+		+	+			
<i>T. anguina</i> Linne										+	+	
<i>T. multiloba</i> Miquel												+
<i>T. rostrata</i> Kitam.												+
<i>T. bracteata</i> Voiq			+						+			

Ap., Apigenin; Lu., Luteolin; Km., Kaempferol; Qu., Quercetin.

Plant materials. Six *Trichosanthes*, 4 wild species, *T. bracteata* Voiq, *T. cucumeroides* Maxim., *T. kirilowii* Maxim. var. *japonica* Kitam. and *T. multiloba* Miquel, plus *T. anguina* L. and *T. kirilowii* Maxim. have been grown in our herbal garden since 1980. Each wild species was collected from three habitats in Japan and transplanted, and the latter two species were from garden seed. *T. anguina* L. was introduced from Tsukuba Experimental Station of Medicinal Plants (National Institute of Hygienic Sciences, 1 Hachimandai, Yatabe-cho, Tsukuba 300-21, Japan). *T. kirilowii* Maxim. was derived from Kyoto Herbal Garden (Pharmacognosy Laboratories, Central Research Division, Takeda Chemical Industries Ltd., Ichijoji, Sakyoku, Kyoto 606, Japan). These plants were collected in August, 1983, plants of *T. rostrata* Kitam. were collected in Kume island, Okinawa, Japan, during the same month. Voucher specimens have been deposited in the herbarium of our university.

Extraction and isolation of flavonoids. The fresh leaves of *Trichosanthes* were individually extracted with MeOH. The individual MeOH extract were extracted successively with Et₂O, EtOAc and *n*-BuOH. The EtOAc extract of *T. anguina* L. afforded 10 and the *n*-BuOH extract afforded 11. The EtOAc extract of *T. bracteata* was chromatographed over Sephadex LH-20 to afforded 9 and the *n*-BuOH extract afforded 4. The EtOAc and *n*-BuOH extracts of *T. cucumeroides* afforded 6 and 7, respectively. A Sephadex LH-20 CC of the EtOAc extract of *T. kirilowii* afforded three flavonoids, 1, 2 and 3, and the column of the *n*-BuOH extract afforded 1 and 4. Four flavonoids, 1-4, were isolated from the EtOAc extract of *T. kirilowii* var. *japonica* by using Sephadex LH-20 CC, and C-glucosylflavone, 5, was isolated from the *n*-BuOH extract. The EtOAc and *n*-BuOH both extracts of *T. multiloba* afforded 8. The flavonol, 8 was also isolated from the EtOAc and *n*-BuOH extracts of *T. rostrata*.

Luteolin 7-O- β -D-glucopyranoside (1). Yellow micro-needles, mp 240-245°. Identification was established by direct comparison (mmp, UV, IR and ¹³C-NMR) with an authentic sample isolated from *Salix gilgiana* Seemen (Salicaceae) [4].

Luteolin 4'-O- β -D-glucopyranoside (2). Yellow needles, mp 190-195°. ¹H-NMR (DMSO-*d*₆): δ 4.89 (1H, *d*, *J* = 6.9 Hz, anomeric H), 6.20 (1H, *d*, *J* = 2.0 Hz, 6-H), 6.50 (1H, *d*, *J* = 2.0 Hz, 8-H), 6.83 (1H, *s*, 3-H), 7.24 (1H, *d*, *J* = 8.8 Hz, 5'-H), 7.49 (1H, *d*, *J* = 1.9 Hz, 2'-H), 7.53 (1H, *dd*, *J* = 1.9 and 8.8 Hz, 6'-H). ¹³C-NMR (DMSO-*d*₆): δ 60.79 (*t*, 6''-C), 69.87 (*d*, 4'-C), 73.29 (*d*, 2''-C), 75.93 (*d*, 3'-C), 94.09 (*d*, 8-C), 99.02 (*d*, 6-C), 101.37 (*d*, 1'-C), 103.91 (*s*, 10-C), 104.10 (*d*, 3-C), 116.21 (*d*, 2'-C), 118.60 (*d*, 5'-C), 124.90 (*s*, 1'-C and *d*, 6'-C), 147.12 (*s*, 3'-C), 148.68 (*s*, 4'-C), 157.52 (*s*, 9-C), 161.62 (*s*, 5-C), 163.37 (*s*, 7-C), 164.45 (*s*, 2-C), 181.93 (*s*, 4-C). Identification was established by UV and ¹H and ¹³C-NMR standard procedures [5, 6].

Apigenin 7-O- β -D-glucopyranoside (3). Yellow needles, mp 238-240°. Identification was established by direct comparison (mmp, UV, IR and ¹³C-NMR) with an authentic sample isolated from *Vicia unijuga* Al. Br. (Leguminosae) [7].

Luteolin 3'-O- β -D-glucopyranoside (4). Yellow needles, mp 221-224°. ¹H-NMR (DMSO-*d*₆): δ 4.91 (1H, *d*, *J* = 6.8 Hz, anomeric H), 6.20 (1H, *d*, *J* = 2.0 Hz, 6-H), 6.53 (1H, *d*, *J* = 2.0 Hz, 8-H), 6.82 (1H, *s*, 3-H), 6.98 (1H, *d*, *J* = 8.3 Hz, 5'-H), 7.67 (1H, *dd*, *J* = 1.5 and 8.3 Hz, 6'-H), 7.80 (1H, *d*, *J* = 1.5 Hz, 2'-H). Identification was established by UV and ¹H- and ¹³C-NMR standard procedures [5, 6, 8].

Apigenin 6,8-di-C- β -glucopyranoside (5). Yellow needles, mp 258-260°. ¹H-NMR (DMSO-*d*₆): δ 4.77 (1H, *d*, *J* = 9.8 Hz, anomeric H), 4.82 (1H, *d*, *J* = 9.8 Hz, anomeric H), 6.81 (1H, *s*, 3-H), 6.93 (2H, *d*, *J* = 8.3 Hz, 3'- and 5'-H), 8.03 (2H, *d*, *J* = 8.3 Hz, 2'- and 6'-H), 9.36 (1H, *br s*, OH), 10.37 (1H, *br s*, OH), 13.71 (1H, *br s*, 5-OH). ¹³C-NMR (DMSO-*d*₆): 59.91 (*t*, 6''-C), 61.28 (*t*, 6''-C), 69.09 (*d*, 4'-C), 70.65 (*d*, 4''-C), 71.00 (*d*, 2''-C), 71.97 (*d*, 2'-C), 73.29 (*d*, 1''-C), 74.13 (*d*, 1'-C), 77.88 (*d*, 3''-C), 78.91 (*d*, 3''-C).

80.91 (*d*, 5''-C), 81.93 (*d*, 5''-C), 102.68 (*d*, 3-C), 103.95 (*s*, 10-C), 105.37 (*s*, 8-C), 107.57 (*s*, 6-C), 115.92 (*d*, 3' and 5'-C), 121.58 (*s*, 1'-C), 129.10 (*d*, 2' and 6'-C), 155.17 (*s*, 9-C), 158.69 (*s*, 5-C), 160.94 (*s*, 4'-C), 161.33 (*s*, 7-C), 164.26 (*s*, 2-C), 182.47 (*s*, 4-C). Identification was established by UV and ¹H and ¹³C-NMR standard procedure [5, 6].

Kaempferol 3,7-di-O- α -L-rhamnopyranoside (6). Yellow needles, mp 226-230°. Identification was established by direct comparison (mmp, UV, IR and ¹³C-NMR) with an authentic sample [2].

Kaempferol 3-O- β -D-glucopyranosyl-7-O- α -L-rhamnopyranoside (7). Yellow needles, mp 249-252°. Identification was established by direct comparison (mmp, UV, IR and ¹³C-NMR) with an authentic sample isolated from *Vicia faba* L. (Leguminosae) [7].

Quercetin 3-O- β -D-rutinoside (8). Yellow needles, mp 188-191°. Identification was established by direct comparison (mmp, UV, IR and ¹³C-NMR) with an authentic sample [9].

Kaempferol 3-O- β -rutinoside (9). Yellow needles, mp 191-194°. Identification was established by direct comparison (mmp, UV, IR and ¹³C-NMR) with an authentic sample isolated from *Clitoria ternatea* L. (Leguminosae) [10].

Kaempferol 3-O- β -D-galactopyranoside (10). Yellow micro-needles, mp 240-245°. Identification was established by direct comparison (mmp, UV, IR and ¹³C-NMR) with an authentic sample isolated from *Liquidambar formosana* Hance (Hamamelidaceae) [9].

Kaempferol 3-O- β -sophoroside (11). Yellow needles, mp 194-200°. ¹H-NMR (DMSO-*d*₆): δ 4.30 (1H, *br*, OH), 4.64 (1H, *d*, *J* = 7.5 Hz, anomeric H), 5.08 (1H, *br*, OH), 5.30 (1H, *br*, OH), 5.72 (1H, *d*, *J* = 7.5 Hz, anomeric H), 6.20 (1H, *d*, *J* = 2.5 Hz, 6-H), 6.43 (1H, *d*, *J* = 2.5 Hz, 8-H), 6.92 (2H, *d*, *J* = 9.0 Hz, 3' and 5'-H), 8.08 (2H, *d*, *J* = 9.0 Hz, 2' and 6'-H), 10.15 (1H, *br s*, OH), 10.82 (1H, *br s*, OH), 12.62 (1H, *s*, OH). Identification was established by UV and ¹H and ¹³C-NMR standard procedure [5, 6, 8].

Acknowledgements—The authors thank Mr S. Sawasaki, Faculty of Medicine, University of Okinawa, for collection of *T. rostrata* and also Mr M. Morikoshi, Analytical Center of our university, for measurement of ¹³C-NMR.

REFERENCES

1. Arisawa, M., Yoshizaki, M. and Morita, N. (1985) *Shoyakugaku Zasshi* **39**, 316.
2. Nakaoki, T. and Morita, N. (1957) *Yakugaku Zasshi* **77**, 108.
3. Yoshizaki, M., Fujino, H., Masuyama, M., Arisawa, M. and Morita, N. (1984) *The Papers of the 31st Annual Meeting of the Japanese Society of Pharmacognosy*, Tokyo, Japan, 87.
4. Morita, N., Shimizu, M., Arisawa, M. and Kitanaka, S. (1974) *Yakugaku Zasshi* **94**, 875.
5. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, New York.
6. Markham, K. R., Chari, V. M. and Mabry, T. J. (1982) *The Flavonoids: Advances in Research* (Harborne, J. B. and Mabry, T. J., eds) p. 19. Chapman & Hall, London.
7. Arisawa, M., Takakuwa, T. and Handa, K. (1971) *Yakugaku Zasshi* **91**, 587.
8. Markham, K. R., Ternai, B., Stanley, R., Geiger, H. and Mabry, T. J. (1978) *Tetrahedron* **34**, 1389.
9. Arisawa, M., Hamabe, M., Sawai, M., Hayashi, T., Kizu, H., Tominori, T., Yoshizaki, M. and Morita, N. (1984) *Shoyakugaku Zasshi* **38**, 216.
10. Morita, N., Arisawa, M., Nagase, M., Hsu, H.-Y. and Chen, Y.-P. (1977) *Yakugaku Zasshi* **97**, 649.